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Results of an experimental study of heat transfer upon incidence of a direct-jet 
and swirled flame on a heat-susceptible surface are presented. 

In a number of industrial devices use is made of jet application of a heat source to a 
heat-susceptible surface. 

The analytic solution of problems involving interaction of a turbulent direct-jet, and 
especially a swirled, flame with heat-susceptible surfaces in a limited space presents sig- 
nificant difficulties. 

It is known that heat transfer upon incidence of a flame on a boundary in a limited space 
depends on many factors, including the flow regime of the heat source, the degree of turbu- 
lence, the distance from the gas burner device to the surface, and the angle between the sur- 
face and incident flow [i, 2]. In particular, heat-exchange in transverse flow over planar 
surfaces was studied in [3-5]. In those studies a calculated formula for the heat-exchange 
coefficient upon formation of a turbulent boundary layer on the surface was presented : 

N~0 0"15Pr~176 [ 0"29Pr~ --1 25 ] 
= - ~ 2  Pr ~ ~ _}_ (R k. __ 2.38)0.8 . (1) 

r,Rk 

E x p e r i m e n t a l  d a t a  have  g e n e r a l i z e d  t h i s  e x p r e s s i o n  to  the  range  Pr = 0 . 7 2 - 8 ,  Re d > 9000, and 
Rk > 2. It should be noted that those studies were performed in an aerodynamic tube. 

The present study is an experimental investigation of the dependence of heat-exchange 
between a flame and a susceptible surface upon the factors enumerated above. A semiindustrial 
apparatus, a diagram of which is shown in Fig. i, was used. The heating chamber is in the 
form of a rectangular prism with working volume dimensions of length, 4000 mm; width, 800 
mm; height, 750 mm. The heat-susceptible surface is located within this volume -- a calorimete: 

480 mm in diameter, which can be moved along the combustion chamber and set at various angles 
to the incident flow. A premix gas burner with removable fittings to produce either a direct- 
jet or swirled flame is attached to the front of the heating chamber. The attachment had an 
axial blade turbulizer with blades located at angles of 15 and 50 ~ to the axis, which, accord- 
ing to the formulas of [6, 7], produce turbulizations of 0.3 and 1.2. During the experiments 
measurements were made of water flow rate through the calorimeter and prismatic chamber section 
(with measurement tanks), gas flow rate (with a GS-100 gas counter), air flow rate (with a Prandtl tub~ 
and MMN microanemometer), and water temperature (with TL-4 thermometers and Chromel--Copel 
thermocouples). Combustion-product composition at the exit of the heating chamber was an- 
alyzed by a GKhP-3 chemical gas analyzer. A Junkers calorimeter was used to determine the 
heat of gas combustion. 

A stationary combustion and heat-exchange regime was established 3.5-4 h after turnon 
of the gas burner. Experiments for a given regime lasted 1.5-2 h. All measurements were 
performed every 5 min after establishment of a stationary regime, with the exception of tem- 
perature field measurements in the combustion chamber, which were made every 20 min. 

Three series of experiments were performed: i) for a direct--jet flame (turbulization 
= 0); 2) for a swirled flame, ~ = 0.3; and 3) ~ = 1.2. In each series of experiments 

the angle of incidence of the flame with the calorimeter surface was adjusted to 90, 60, 30, 
and 0 ~ and Reynolds numbers were increased from 1400 to 4500. Physical parameters were 
taken for the mean flame temperature near the calorimeter surface, and the calorimeter diam- 
eter was used as the defining dimension. 
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F i g .  1 .  E x p e r i m e n t a l  a p p a r a t u s :  1)  h e a t  c h a m b e r ;  2) c a l o r i m -  
e t e r s ;  3) combustion product exhaust; 4) burner; 5) ventilator; 
6) microanemometer; 7) igniter; 8) stopcock; 9)manometers; i0) 
thermometers; ii) gas counter; 12) reference manometer; 13) gate 
valve; 14) viewports; 15) measuring tank. 
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Fig. 2 Fig. 3 

Fig. 2. Function Nu = f(Re) in combustion chamber for direct-jet 
and swirled flames (L/do = 5.6; ~ = 90*): i) direct-jet flame, ~ = 
0; 2) swirled flame, ~ = 1.2; 3) swirled, ~ = 0.3. 

Fig. 3. Function Nu = f(L/do) in combustion chamber for direct- 
jet and swirled flames: i) ~ = 1.2; 2) 0.3; 3) 0. 

Figure 2 presents curves of Nudk = f(Redk) for direct-jet and swirled flames incident on 
the heat-susceptible surface at an angle ~ = 90 ~ , with distance from burner mouth s calorimeter L/ 
do = 5.6. It is evident from the figure that with increase in flame turbulence the heat-exchange 
increases in comparison to the direct-jet case by 19% at ~ = 0.3 and by 49% at~ = 1.2. This 
relationship is preserved for Redk = 3500, Pr =' 0.57 within the limits 5.6L/d$~8, and may 
be approximated by the following expressions: 

for direct-jet flame, 

for flame with turbulization ~ = 0.2, 

Nua k = 0.590 R e ~  8a, 

Ntldk 0.693 Re ~ - -  d k , 

(2) 

(3) 
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Fig. 4. Function Num/Num90 ~ = 
f(~[90 ~ : 1-3) experimental data of 
present authors (i, for direct-jet 
flame; 2, for swirled flame, ~ = 0.3; 3, 
for swirled flame, Q= 1.2); 4) dataof [ii] 
(for four-section calorimeter 980 x 
760 nun in limited space with L/do = 
22.8); 5) data of [i0] (for disk 
344 mm in diameter in unbounded flow); 
6, 7) data of [12] (for plate 300 x 
300 mm in aerodynamic tube, Re = 
85,000 and 30,000, respectively); 8, 
9) data of [2] (for 176-4nm-diameter 
diskinunbounded space, Re = 12,000 
and 4500, respectively, L/do<- 2). 

and for ~ = 1.2, 

NUdk = 0.890 Re ~ (4) ~k " 

I t  s h o u l d  be n o t e d  t h a t  change  i n  L/do from 8 to  l0  f o r  ~ = 1 .2  l e a d s  to  a s i g n i f i c a n t  
d e c r e a s e  i n  h e a t  t r a n s f e r  f rom the  f l ame to  the  s u r f a c ' e .  For  L/do > 15 h e a t  t r a n s f e r  b e -  
comes g r e a t e r  f o r  the  d i r e c t - j e t  f l ame  t h a n  f o r  t h e  s w i r l e d  f l ame .  As i s  e v i d e n t  f r o m F i g .  3, 
t he  d e g r e e  o f  t u r b u l e n c e  c e a s e s  to  have  an e f f e c t  on h e a t  t r a n s f e r  f o r  L/do > 18. This  may 
be e x p l a i n e d  by the  p e c u l i a r i t y  of  a s w i r l e d  f l ame  t h a t  i t s  l o n g - - d i s t a n c e  e f f e c t  i s  r educed  
by i t s  more i n t e n s e  mass exchange  w i t h  the  s u r r o u n d i n g  medium [ 8 ] ,  and a l s o  by t he  s t r o n g  
d e g e n e r a t i o n  o f  a e r o s t r u c t u r e  and form f o r  a f l ame  o f  t h i s  c a l i b e r  [ 9 ] .  

A n a l y s i s  of  the  c u r v e s  o f  F i g .  4 shows t h a t  f o r  d i r e c t - j e t  f l ames  ( c u r v e s  3, 8, 9 ) ,  
s w i r l e d  f l a m e s  [ l ,  2,  4 ) ,  and a l s o  f o r  n o n i s o t h e r m a l  j e t s  (5,  6, 7) h e a t  t r a n s f e r  i n c r e a s e s  
w i t h  i n c r e a s e  i n  t he  a n g l e  o f  i n c i d e n c e  o f  t h e  w o r k i n g  s u b s t a n c e  w i t h  t h e  h e a t - s u s c e p t i b l e  s u r -  
f a c e .  The d i v e r g e n c e  i n  t h e s e  c u r v e s  can  be e x p l a i n e d  by the  v a r i o u s  a e r o d y n a m i c  c o n d i t i o n s  
o c c u r r i n g  i n  bounded and unbounded s p a c e s ,  t he  d i f f e r i n g  n o z z l e  f l ow r a t e s ,  n o n i s o t h e r m a l  
c o n d i t i o n s  i n  the  f l ow ,  and s l i g h t  v a r i a t i o n s  o f  L/do ( i n  4, 5, 8, and 9 ) .  

The e x p e r i m e n t a l  s t u d y  p e r f o r m e d  h e r e i n  has  p e r m i t t e d  o b t a i n i n g  f o r m u l a s  f o r  the  depen-  
dence  o f  h e a t  t r a n s f e r  on t h e  p a r a m e t e r s  c i t e d  above .  
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